About the Analyst
Matt Aslett
Matt leads the expertise in Digital Technology covering applications and technology that improve the readiness and resilience of business and IT operations. His focus areas of expertise and market coverage include: analytics and data, artificial intelligence and machine learning, blockchain, cloud computing, collaborative and conversational computing, extended reality, Internet of Things mobile computing and robotic automation. Matt’s specialization is in operational and analytical use of data and how businesses can modernize their approaches to business to accelerate the value realization of technology investments in support of hybrid and multi-cloud architecture. Matt has been an industry analyst for more than a decade and has pioneered the coverage of emerging data platforms including NoSQL and NewSQL databases, data lakes and cloud-based data processing. He is a graduate of Bournemouth University.
Increased enterprise focus on artificial intelligence (AI) and generative AI (GenAI) has served to sharpen the focus on the need for trusted data and reliable analytics and data operations. The ISG State of Generative AI Market Report highlighted that elevated expectations and demands associated with AI are a forcing function for enterprises to take long-overdue steps to improve data and analytics processes to ensure that data that is clean, well-organized and compliant with regulatory...
Read More
Topics:
Analytics,
AI,
data operations,
Analytics & Data,
Generative AI,
Machine Learning Operations,
AI & Machine Learning
Data catalogs provide an inventory of data assets that surface metadata from data platforms, analytics tools and applications that can be used to facilitate data discovery and data usage across an enterprise. As I recently explained, however, there are actually multiple types of data catalogs that offer functionality to address specific use cases and user roles, including data inventory, data discovery and data governance. The data intelligence catalog is an emerging category that combines...
Read More
Topics:
Governance,
Operations,
AI,
Data Platforms,
Data Intelligence,
AI & Technologies
As enterprises seek to expand and accelerate the adoption of artificial intelligence (AI) many are finding that longstanding analytics and data challenges are a barrier to success. As was explained in ISG’s State of Generative AI Market Report, AI requires data that is clean, well-organized and compliant with regulatory standards. The need for good data management is by no means new, but the expectations and demands associated with AI are a forcing function for enterprises to take long-overdue...
Read More
Topics:
Machine Learning,
Analytics,
Data,
Artificial intelligence,
natural language processing,
Generative AI,
Data Intelligence,
Machine Learning Operations
Late 2024 saw the publication of the 2024 ISG Buyers Guides for DataOps, providing an assessment of 49 software providers offering products used by data engineers, data scientists, and data and AI professionals to facilitate the use of data for analytics and AI needs. The DataOps Buyers Guide research includes five reports which are focused on overall DataOps, Data Observability, Data Orchestration, Data Pipelines and Data Products. This is the first time in the industry when all software...
Read More
Topics:
Analytics,
Data Platforms,
Analytics & Data,
AI and Machine Learning,
Data Intelligence
It is now more than two years since the launch of ChatGPT introduced the world to generative AI (GenAI) and large language models (LLMs). GenAI-based assistants and co-pilots are now widely adopted, with individuals and enterprises adopting GenAI models to automate the generation of text, digital images, audio, video and code, amongst other things.
Read More
Topics:
Analytics,
AI,
Analytics & Data,
AI and Machine Learning,
Generative AI
I recently wrote about the need for enterprises to harness events to process and act upon data at the speed of business. The core technologiesthat enable enterprises to process and analyze data in real time have been in existence for many years and are widely adopted. However, streaming and events technologies are also commonly seen as a niche requirement, separate from an enterprise’s primary focus on batch processing of data at rest. One of the reasons for this is an entrenched reliance on...
Read More
Topics:
Analytics & Data,
Streaming Data & Events
Metadata management has played a role in data governance and analytics for many years. It wasn’t until the emergence of the data catalog as a product category just over a decade ago that enterprises had a platform for metadata-driven data management that could span multiple departments and use cases across an entire enterprise.
Read More
Topics:
AI and Machine Learning,
Data Intelligence,
Analytics and Data
The degree to which data platforms are critical to efficient business operations cannot be overstated. Without data platforms, enterprises would be reliant on a combination of paper records, time-consuming manual processes and huge libraries of physical files to record, process and store business information. The extent to which that is unthinkable highlights the level at which today’s enterprises and society as a whole rely on data platforms. The core persistence, management, processing and...
Read More
Topics:
Analytics,
Data Platforms,
AI and Machine Learning,
Analytics and Data
Despite all the interest in artificial intelligence (AI) and generative AI (GenAI), ISG’s Buyers Guide for Data Platforms serves as a reminder of the ongoing importance of product experience functionality to address adaptability, manageability, reliability and usability. While new and emerging capabilities might catch the eye, features that address data platform security, performance and availability remain some of the most significant deal-breakers when enterprises are considering potential...
Read More
Topics:
AI,
Data Platforms,
AI and Machine Learning,
Generative AI,
Analytics and Data
Too often, enterprises find that data is distributed across multiple silos on-premises and in the cloud. More than two-thirds of participants in ISG’s Market Lens Cloud Study are using a hybrid architecture involving both on-premises and cloud infrastructure for analytics and artificial intelligence deployments. Unifying data to achieve operational and analytic objectives requires complex data integration and management processes. Fulfilling these processes requires a smorgasbord of tools aimed...
Read More
Topics:
AI,
Data Platforms,
AI and Machine Learning,
Generative AI,
Model Building and Large Language Models,
Data Intelligence,
Machine Learning Operations,
Analytics and Data