Increased enterprise focus on artificial intelligence (AI) and generative AI (GenAI) has served to sharpen the focus on the need for trusted data and reliable analytics and data operations. The ISG State of Generative AI Market Report highlighted that elevated expectations and demands associated with AI are a forcing function for enterprises to take long-overdue steps to improve data and analytics processes to ensure that data that is clean, well-organized and compliant with regulatory...
Read More
Topics:
Analytics,
AI,
data operations,
Generative AI,
Machine Learning Operations,
Analytics and Data,
AI and Machine Learning
Late 2024 saw the publication of the 2024 ISG Buyers Guides for DataOps, providing an assessment of 49 software providers offering products used by data engineers, data scientists, and data and AI professionals to facilitate the use of data for analytics and AI needs. The DataOps Buyers Guide research includes five reports which are focused on overall DataOps, Data Observability, Data Orchestration, Data Pipelines and Data Products. This is the first time in the industry when all software...
Read More
Topics:
Analytics,
Data Platforms,
Data Intelligence,
Analytics and Data,
AI and Machine Learning
It is now more than two years since the launch of ChatGPT introduced the world to generative AI (GenAI) and large language models (LLMs). GenAI-based assistants and co-pilots are now widely adopted, with individuals and enterprises adopting GenAI models to automate the generation of text, digital images, audio, video and code, amongst other things.
Read More
Topics:
Analytics,
AI,
Generative AI,
Analytics and Data,
AI and Machine Learning
Metadata management has played a role in data governance and analytics for many years. It wasn’t until the emergence of the data catalog as a product category just over a decade ago that enterprises had a platform for metadata-driven data management that could span multiple departments and use cases across an entire enterprise.
Read More
Topics:
Data Intelligence,
Analytics and Data,
AI and Machine Learning
The degree to which data platforms are critical to efficient business operations cannot be overstated. Without data platforms, enterprises would be reliant on a combination of paper records, time-consuming manual processes and huge libraries of physical files to record, process and store business information. The extent to which that is unthinkable highlights the level at which today’s enterprises and society as a whole rely on data platforms. The core persistence, management, processing and...
Read More
Topics:
Analytics,
Data Platforms,
Analytics and Data,
AI and Machine Learning
Despite all the interest in artificial intelligence (AI) and generative AI (GenAI), ISG’s Buyers Guide for Data Platforms serves as a reminder of the ongoing importance of product experience functionality to address adaptability, manageability, reliability and usability. While new and emerging capabilities might catch the eye, features that address data platform security, performance and availability remain some of the most significant deal-breakers when enterprises are considering potential...
Read More
Topics:
AI,
Data Platforms,
Generative AI,
Analytics and Data,
AI and Machine Learning
Too often, enterprises find that data is distributed across multiple silos on-premises and in the cloud. More than two-thirds of participants in ISG’s Market Lens Cloud Study are using a hybrid architecture involving both on-premises and cloud infrastructure for analytics and artificial intelligence deployments. Unifying data to achieve operational and analytic objectives requires complex data integration and management processes. Fulfilling these processes requires a smorgasbord of tools aimed...
Read More
Topics:
AI,
Data Platforms,
Generative AI,
Model Building and Large Language Models,
Data Intelligence,
Machine Learning Operations,
Analytics and Data,
AI and Machine Learning
As I explained in our recent Buyers Guide for Data Platforms, the popularization of generative artificial intelligence (GenAI) has had a significant impact on the requirements for data platforms in the last 18 months. While there is an ongoing need for data platforms to support data warehousing workloads involving analytic reports and dashboards, there is increasing demand for analytic data platform providers to add dedicated functionality for data engineering, including the development,...
Read More
Topics:
Analytics,
natural language processing,
Data Platforms,
Generative AI,
Model Building and Large Language Models,
Machine Learning Operations,
AI and Machine Learning
Enterprises face a bewildering level of choice in relation to data platforms, as evidenced by the number of software providers and products assessed in our recent Data Platforms Buyers Guide. There are numerous data platform providers and products to choose from, but also a diverse array of functional and architectural options. Is the workload primarily operational or analytic? Will it be deployed on-premises or in the cloud? Should it be distributed or centralized? Data warehouse or data...
Read More
Topics:
Data Platforms,
Data Intelligence,
Analytics and Data,
AI and Machine Learning
I have written on multiple occasions about the increasing proportion of enterprises embracing the processing of streaming data and events alongside traditional batch-based data processing. I assert that, by 2026, more than three-quarters of enterprises’ standard information architectures will include streaming data and event processing, allowing enterprises to be more responsive and provide better customer experiences.
Read More
Topics:
Data Platforms,
Streaming Data & Events,
Analytics and Data,
AI and Machine Learning