I recently described how business data catalogs are evolving into data intelligence catalogs. These catalogs combine technical and business metadata and data governance capabilities with knowledge graph functionality to deliver a holistic, business-level view of data production and consumption. The concept of the knowledge graph has been part of the data sector for decades, but adoption has typically been limited to industries and enterprises focused on the Semantic Web, such as media,...
Read More
Topics:
Governance,
Data Governance,
Generative AI,
Data Intelligence,
AI & Technologies
Data governance has always been a critical part of the data and analytics landscape. However, for many years, it was seen as a preventive function to limit access to data and ensure compliance with security and data privacy requirements. To fulfill today’s data-driven agendas, many enterprises need an evolved perspective on data governance. The development of new applications driven by artificial intelligence requires a more agile and collaborative approach to data governance—one that automates...
Read More
Topics:
Governance,
Machine Learning,
Operations,
AI,
Data Intelligence
It has been a little over a decade since the term data operations entered the analytics and data lexicon. It describes the application of agile development, DevOps and lean manufacturing by data engineering professionals in support of data production. DataOps was initially seen as antithetical to traditional data management approaches, which typically included batch-based and manual tools and practices. The term was embraced by emerging software providers as a means of differentiating from...
Read More
Topics:
Governance,
Machine Learning,
Operations,
Generative AI,
Data Intelligence
In an earlier Analyst Perspective, I discussed data democratization’s role in creating a data-driven enterprise agenda. Building a foundation of self-service data discovery, data-driven organizations provide more workers with the ability to analyze and use data. I’ve also examined how generative artificial intelligence (GenAI) could revolutionize business intelligence software by using natural language interfaces to lower the barriers to working with analytics software. Today, however, data...
Read More
Topics:
Analytics,
AI,
Data Intelligence
Data catalogs provide an inventory of data assets that surface metadata from data platforms, analytics tools and applications that can be used to facilitate data discovery and data usage across an enterprise. As I recently explained, however, there are actually multiple types of data catalogs that offer functionality to address specific use cases and user roles, including data inventory, data discovery and data governance. The data intelligence catalog is an emerging category that combines...
Read More
Topics:
Governance,
Operations,
AI,
Data Platforms,
Data Intelligence,
AI & Technologies
As enterprises seek to expand and accelerate the adoption of artificial intelligence (AI) many are finding that longstanding analytics and data challenges are a barrier to success. As was explained in ISG’s State of Generative AI Market Report, AI requires data that is clean, well-organized and compliant with regulatory standards. The need for good data management is by no means new, but the expectations and demands associated with AI are a forcing function for enterprises to take long-overdue...
Read More
Topics:
Machine Learning,
Analytics,
Data,
Artificial intelligence,
natural language processing,
Generative AI,
Data Intelligence,
Machine Learning Operations
Late 2024 saw the publication of the 2024 ISG Buyers Guides for DataOps, providing an assessment of 49 software providers offering products used by data engineers, data scientists, and data and AI professionals to facilitate the use of data for analytics and AI needs. The DataOps Buyers Guide research includes five reports which are focused on overall DataOps, Data Observability, Data Orchestration, Data Pipelines and Data Products. This is the first time in the industry when all software...
Read More
Topics:
Analytics,
Data Platforms,
Data Intelligence,
Analytics and Data,
AI and Machine Learning
Metadata management has played a role in data governance and analytics for many years. It wasn’t until the emergence of the data catalog as a product category just over a decade ago that enterprises had a platform for metadata-driven data management that could span multiple departments and use cases across an entire enterprise.
Read More
Topics:
Data Intelligence,
Analytics and Data,
AI and Machine Learning
Too often, enterprises find that data is distributed across multiple silos on-premises and in the cloud. More than two-thirds of participants in ISG’s Market Lens Cloud Study are using a hybrid architecture involving both on-premises and cloud infrastructure for analytics and artificial intelligence deployments. Unifying data to achieve operational and analytic objectives requires complex data integration and management processes. Fulfilling these processes requires a smorgasbord of tools aimed...
Read More
Topics:
AI,
Data Platforms,
Generative AI,
Model Building and Large Language Models,
Data Intelligence,
Machine Learning Operations,
Analytics and Data,
AI and Machine Learning
Although the terms data fabric and data mesh are often used interchangeably, I previously explained that they are distinct but complementary. Data fabric refers to technology products that can be used to integrate, manage and govern data across distributed environments, supporting the cultural and organizational data ownership and access goals of data mesh. Data fabric and data mesh are also both related to logical data management, which is the approach of providing virtualized access to data...
Read More
Topics:
Data Intelligence,
Analytics and Data