Organizations increasingly rely on real-time analytics to make informed decisions and stay competitive in today’s data-driven business landscape. As the complexity of data grows with the continuous addition of diverse sources, customers and workers alike expect real-time responsiveness. Accelerated query performance is crucial to process and extract valuable insights from data in a timely manner. Traditional analytics applications are often insufficient for managing the scale, velocity and...
Read More
Topics:
Data Management,
Data,
data operations,
Streaming Data & Events,
analytic data platforms
Data fabric has grown in popularity as organizations struggle to manage data spread across multiple data centers, systems and applications. By providing a technology-driven approach to automating data management and governance across distributed environments, data fabric is attractive to organizations seeking to simplify and standardize data management. I assert that by 2025, more than 6 in 10 organizations will adopt data fabric technologies to facilitate the management and processing of data...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data,
analytic data platforms
Master data management may not attract the same level of excitement as fashionable topics such as DataOps or Data Platforms, but it remains one of the most significant aspects of an organization’s strategic approach to data management. Having trust in data is critical to the ability of an organization to make data-driven business decisions. Along with data quality, MDM enables organizations to ensure data is accurate, complete and consistent to fulfill operational business objectives.
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations
To execute more data-driven business strategies, organizations need linked and comprehensive data that is available in real time. By consistently managing data across siloed systems and ensuring that data definitions are agreed and current, organizations can overcome the challenges presented by data being distributed across an increasingly disparate range of applications and data-processing locations. Maintaining data quality is a perennial data management challenge, often preventing...
Read More
Topics:
Data Management,
Data,
data operations
Data Operations (DataOps) has been part of the lexicon of the data market for almost a decade, with the term used to describe products, practices and processes designed to support agile and continuous delivery of data analytics. DataOps takes inspiration from DevOps, which describes a set of tools, practices and philosophy used to support the continuous delivery of software applications in the face of constant changes. DataOps describes a set of tools, practices and philosophy used to ensure...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations
As data continues to grow and evolve, organizations seek better tools and technologies to employ data faster and more efficiently. Finding and managing data remains a perennial challenge for most organizations, and is exacerbated by increasing volumes of data and an expanding array of data formats. At the same time, organizations must comply with a growing list of national and regional rules and regulations, such as General Data Protection Regulation and the California Consumer Privacy Act....
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations
I have previously written about the importance of data democratization as a key element of a data-driven agenda. Removing barriers that prevent or delay users from gaining access to data enables it to be treated as a product that is generated and consumed, either internally by employees or externally by partners and customers. This is particularly important for organizations adopting the data mesh approach to data ownership, access and governance. Data mesh is an organizational and cultural...
Read More
Topics:
Cloud Computing,
Data Governance,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data
The market for data and analytics products is constantly evolving, with the emergence of new approaches to data persistence, data processing and analytics. This enables organizations to constantly adapt data analytics architecture in response to emerging functional capabilities and business requirements. It can, however, also be a challenge. Investments in data platforms cannot be constantly written-off as organizations adopt new products for new approaches. Too little change can lead to...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations
Data observability was a hot topic in 2022 and looks likely to be a continued area of focus for innovation in 2023 and beyond. As I have previously described, data observability software is designed to automate the monitoring of data platforms and data pipelines, as well as the detection and remediation of data quality and data reliability issues. There has been a Cambrian explosion of data observability software vendors in recent years, and while they have fundamental capabilities in common,...
Read More
Topics:
Cloud Computing,
Data Management,
Data,
Digital Technology,
data operations,
Analytics & Data
Organizations across various industries collect multiple types of data from disparate systems to answer key business questions and deliver personalized experiences for customers. The expanding volume of data increases complexity, and data management becomes a challenge if the process is manual and rules-based. There can be numerous siloed, incomplete and outdated data sources that result in inaccurate results. Organizations must also deal with concurrent errors – from customers to products to...
Read More
Topics:
Data Governance,
Data Management,
Data,
data operations,
analytic data platforms